初中數(shù)學(xué)圓教案

時(shí)間:2024-09-03 07:41:04 數(shù)學(xué)教案 我要投稿

初中數(shù)學(xué)圓教案

  作為一名教學(xué)工作者,往往需要進(jìn)行教案編寫工作,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么你有了解過教案嗎?以下是小編為大家收集的初中數(shù)學(xué)圓教案,僅供參考,希望能夠幫助到大家。

初中數(shù)學(xué)圓教案

初中數(shù)學(xué)圓教案1

  一、教學(xué)任務(wù)分析

  1、教學(xué)目標(biāo)定位

  根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和素質(zhì)教育的要求,結(jié)合學(xué)生的認(rèn)知規(guī)律及心理特征而確定,即:七年級的學(xué)生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強(qiáng)的表現(xiàn)欲,同時(shí)又具備了一定的歸納、總結(jié)表達(dá)的能力。因此,確定如下教學(xué)目標(biāo):

  (1).知識技能目標(biāo)

  讓學(xué)生掌握多邊形的內(nèi)角和的公式并熟練應(yīng)用。

  (2).過程和方法目標(biāo)

  讓學(xué)生經(jīng)歷知識的形成過程,認(rèn)識數(shù)學(xué)特征,獲得數(shù)學(xué)經(jīng)驗(yàn),進(jìn)一步發(fā)展學(xué)生的說理意識和簡單推理,合情推理能力。

  (3).情感目標(biāo)

  激勵學(xué)生的學(xué)習(xí)熱情,調(diào)動他們的學(xué)習(xí)積極性,使他們有自信心,激發(fā)學(xué)生樂于合作交流意識和獨(dú)立思考的習(xí)慣。

  2、教學(xué)重、難點(diǎn)定位

  教學(xué)重點(diǎn)是多邊形的內(nèi)角和的得出和應(yīng)用。

  教學(xué)難點(diǎn)是探索和歸納多邊形內(nèi)角和的過程。

  二、教學(xué)內(nèi)容分析

  1、教材的地位與作用

  本課選自人教版數(shù)學(xué)七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時(shí)。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進(jìn),這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認(rèn)知特點(diǎn)。

  2、聯(lián)系及應(yīng)用

  本節(jié)課是以三角形的知識為基礎(chǔ),仿照三角形建立多邊形的有關(guān)概念。因此

  多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會把復(fù)雜化為簡單,化未知為已知,從特殊到一般和轉(zhuǎn)化等重要的思想方法。而多邊形在工程技術(shù)和實(shí)用圖案等方面有許多的實(shí)際應(yīng)用,下一節(jié)平面鑲嵌就要用到,讓學(xué)生接觸一些多邊形的實(shí)例,可以加深對它的概念以及性質(zhì)的理解。

  三、教學(xué)診斷分析

  學(xué)生對三角形的知識都已經(jīng)掌握。讓學(xué)生由三角形的內(nèi)角和等于180°,是一個(gè)定值,猜想四邊形的內(nèi)角和也是一個(gè)定值,這是學(xué)生很容易理解的地方。由幾個(gè)特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個(gè)定值,這個(gè)定值是360°。要得到四邊形的內(nèi)角和等于360°這個(gè)結(jié)論最直接的方法就是用量角器來度量。讓學(xué)生動手探索實(shí)踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導(dǎo)學(xué)生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個(gè)三角形,應(yīng)用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學(xué)生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導(dǎo),學(xué)習(xí)將新問題化歸為已有結(jié)論的思想方法,這里學(xué)生都容易理解。課堂教學(xué)設(shè)計(jì)中,在探究五邊形,六邊形和七邊形的內(nèi)角和時(shí),讓學(xué)生動手實(shí)踐,設(shè)置探究活動二,為了讓學(xué)生拓寬思路,從不同的角度去思考這個(gè)問題,這個(gè)活動對學(xué)生的動手能力要求進(jìn)一步提高了,學(xué)生對這個(gè)問題的理解稍微有些難度,但學(xué)生可根據(jù)自己本身的特點(diǎn)來加以補(bǔ)充和完善。在教學(xué)設(shè)計(jì)中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個(gè)成員對所選擇的方法要了解,能夠把掌握的知識運(yùn)用到實(shí)踐中;再者,小組內(nèi)各個(gè)成員需要分工協(xié)作,才能夠順利的把任務(wù)完成;最后,學(xué)生還需要把自己的思維從感性認(rèn)識提升到理性認(rèn)識的高度,這樣就培養(yǎng)了學(xué)生合情推理的意識。

  四、教法特點(diǎn)及預(yù)期效果分析

  本節(jié)課借鑒了美國教育家杜威的"在做中學(xué)"的理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"的思想,我確定如下教法和學(xué)法:

  1、教學(xué)方法的設(shè)計(jì)

  我采用了探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過程充滿了師生之間,學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的`主體。

  2、活動的開展

  利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  3、現(xiàn)代教育技術(shù)的應(yīng)用

  我利用課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率。探究活動在本次教學(xué)設(shè)計(jì)中占了非常大的比例,探究活動一設(shè)置目的讓學(xué)生動手實(shí)踐,并把新知識與學(xué)過的三角形的相關(guān)知識聯(lián)系起來;探究活動二設(shè)置目的讓學(xué)生拓寬思路,為放開書本的束縛打下基礎(chǔ);培養(yǎng)學(xué)生動手操作的能力和合情推理的意識。通過師生共同活動,訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神;使學(xué)生懂得數(shù)學(xué)內(nèi)容普遍存在相互聯(lián)系,相互轉(zhuǎn)化的特點(diǎn)。練習(xí)活動的設(shè)計(jì),目的一檢查學(xué)生的掌握知識的情況,并促進(jìn)學(xué)生積極思考;目的二凸現(xiàn)小組合作的特點(diǎn),并促進(jìn)學(xué)生情感交流。

  以上是我對《多邊形的內(nèi)角和》的教學(xué)設(shè)計(jì)說明。

初中數(shù)學(xué)圓教案2

  【學(xué)習(xí)目標(biāo)】

  1.了解圓周角的概念.

  2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

  3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90的圓周角所對的弦是直徑.

  4.熟練掌握圓周角的定理及其推理的靈活運(yùn)用.

  設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動證明定理推論的'正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實(shí)際問題

  【學(xué)習(xí)過程】

  一、溫故知新:

  (學(xué)生活動)同學(xué)們口答下面兩個(gè)問題.

  1.什么叫圓心角?

  2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?

  二、自主學(xué)習(xí):

  自學(xué)教材p90---p93,思考下列問題:

  1、什么叫圓周角?圓周角的兩個(gè)特征: 。

  2、在下面空里作一個(gè)圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

  (1)一個(gè)弧上所對的圓周角的個(gè)數(shù)有多少個(gè)?

  (2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?

  (3).同弧上的圓周角與圓心角有什么關(guān)系?

  3、默寫圓周角定理及推論并證明。

  4、能去掉同圓或等圓嗎?若把同弧或等弧改成同弦或等弦性質(zhì)成立嗎?

  5、教材92頁思考?在同圓或等圓中,如果兩個(gè)圓周角相等,它們所對的弧一定相等嗎?為什么?

  三、典型例題:

  例1、(教材93頁例2)如圖, ⊙o的直徑ab為10cm,弦ac為6cm,acb的平分線交⊙o于d,求bc、ad、bd的長。

  例2、如圖,ab是⊙o的直徑,bd是⊙o的弦,延長bd到c,使ac=ab,bd與cd的大小有什么關(guān)系?為什么?

  四、鞏固練習(xí):

  1、(教材p93練習(xí)1)

  解:

  2、(教材p93練習(xí)2)

  3、(教材p93練習(xí)3)

  證明:

  4、(教材p95習(xí)題24.1第9題)

  五、 總結(jié)反思:

  【達(dá)標(biāo)檢測】

  1.如圖1,a、b、c三點(diǎn)在⊙o上,aoc=100,則abc等于( ).

  a.140 b.110 c.120 d.130

  2.如圖2,1、2、3、4的大小關(guān)系是( )

  a.3 b.32

  c.2 d.2

  3.如圖3,(中考題)ab是⊙o的直徑,bc,cd,da是⊙o的弦,且bc=cd=da,則bcd等于( )

  a.100 b.110 c.120 d.130

  4.半徑為2a的⊙o中,弦ab的長為2 a,則弦ab所對的圓周角的度數(shù)是________.

  5.如圖4,a、b是⊙o的直徑,c、d、e都是圓上的點(diǎn),則2=_______.

  6.(中考題)如圖5,于,若,則

  7.如圖,弦ab把圓周分成1:2的兩部分,已知⊙o半徑為1,求弦長ab.

  【拓展創(chuàng)新】

  1.如圖,已知ab=ac,apc=60

  (1)求證:△abc是等邊三角形.

  (2)若bc=4cm,求⊙o的面積.

  2、教材p95習(xí)題24.1第12、13題。

  【布置作業(yè)】教材p95習(xí)題24.1第10、11題。

初中數(shù)學(xué)圓教案3

  一、教學(xué)目標(biāo)

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;

  4、通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):

  (1)二次根的意義;

  (2)二次根式中字母的取值范圍。

  難點(diǎn):確定二次根式中字母的取值范圍。

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合。

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1、什么叫平方根、算術(shù)平方根?

  2、說出下列各式的意義,并計(jì)算

  (二)引入新課

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

  (2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

  例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?

  解:略。

  說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。

  例3當(dāng)字母取何值時(shí),下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。

  (2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。

  (3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。

  例4下列各式是二次根式,求式子中的`字母所滿足的條件:

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。

  (4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數(shù)學(xué)圓教案4

  一、課題

  27.3過三點(diǎn)的圓

  二、教學(xué)目標(biāo)

  1.經(jīng)歷過一點(diǎn)、兩點(diǎn)和不在同一直線上的三點(diǎn)作圓的過程.

  2..知道過不在同一條直線上的三個(gè)點(diǎn)畫圓的方法

  3.了解三角形的外接圓和外心.

  三、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):經(jīng)歷過一點(diǎn)、兩點(diǎn)和不在同一直線上的三點(diǎn)作圓的過程.

  難點(diǎn):知道過不在同一條直線上的三個(gè)點(diǎn)畫圓的方法.

  四、教學(xué)手段

  現(xiàn)代課堂教學(xué)手段

  五、教學(xué)方法

  學(xué)生自己探索

  六、教學(xué)過程設(shè)計(jì)

  (一)、新授

  1.過已知一個(gè)點(diǎn)a畫圓,并考慮這樣的圓有多少個(gè)?

  2.過已知兩個(gè)點(diǎn)a、b畫圓,并考慮這樣的圓有多少個(gè)?

  3.過已知三個(gè)點(diǎn)a、b、c畫圓,并考慮這樣的圓有多少個(gè)?

  讓學(xué)生以小組為單位,進(jìn)行探索、思考、交流后,小組選派代表向全班學(xué)生展示本小組的探索成果,在展示后,接受其他學(xué)生的質(zhì)疑.

  得出結(jié)論:過一點(diǎn)可以畫無數(shù)個(gè)圓;過兩點(diǎn)也可以畫無數(shù)個(gè)圓;這些圓的圓心都在連結(jié)這兩點(diǎn)的線段的垂直平分線上;經(jīng)過不在同一直線上的三個(gè)點(diǎn)可以畫一個(gè)圓,并且這樣的圓只有一個(gè).

  不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓.

  給出三角形外接圓的概念:經(jīng)過三角形三個(gè)頂點(diǎn)可以作一個(gè)圓,這個(gè)圓叫作三角形的`外接圓,外接圓的圓心叫做三角形的外心.

  例:畫已知三角形的外接圓.

  讓學(xué)生探索課本第15頁習(xí)題1.

  一起探究

  八年級(一)班的學(xué)生為老區(qū)的小朋友捐款500元,準(zhǔn)備為他們購買甲、乙兩種圖書共12套.已知甲種圖書每套45元,乙種圖書每套40元.這些錢最多能買甲種圖書多少套?

  分析:帶領(lǐng)學(xué)生完成課本第13頁的表格,并完成2、3問題,使學(xué)生清楚通過列表可以更好的分析題目,對于情景較為復(fù)雜的問題情景可采用這種分析方法解題.另外通過此題,使學(xué)生認(rèn)識到:在應(yīng)不等式解決實(shí)際問題時(shí),當(dāng)求出不等式的解集后,還要根據(jù)問題的實(shí)際意義確定問題的解.

  (二)、小結(jié)

  七、練習(xí)設(shè)計(jì)

  p15習(xí)題2、3

  八、教學(xué)后記

  后備練習(xí):

  1.已知一個(gè)三角形的三邊長分別是,則這個(gè)三角形的外接圓面積等于.

  2.如圖,有a,C三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在()

  a.在ac,bc兩邊高線的交點(diǎn)處

  b.在ac,bc兩邊中線的交點(diǎn)處

  c.在ac,bc兩邊垂直平分線的交點(diǎn)處

  d.在a,b兩內(nèi)角平分線的交點(diǎn)處

初中數(shù)學(xué)圓教案5

  教學(xué)目標(biāo):

  1、使學(xué)生學(xué)會較熟煉地運(yùn)用切線的判定方法和切線的性質(zhì)證明問題。

  2、掌握運(yùn)用切線的性質(zhì)和切線的判定的有關(guān)問題中輔助線引法的基本規(guī)律。

  教學(xué)重點(diǎn):

  使學(xué)生準(zhǔn)確、熟煉、靈活地運(yùn)用切線的判定方法及其性質(zhì)。教學(xué)難點(diǎn):學(xué)生對題目不能準(zhǔn)確地進(jìn)行論證。證題中常會出現(xiàn)不知如何入手,不知往哪個(gè)方向證的情形。

  教學(xué)過程:

  一、新課引入:

  我們已經(jīng)系統(tǒng)地學(xué)習(xí)了切線的判定方法和切線的性質(zhì),現(xiàn)在我們來利用這些知識證明有關(guān)幾何問題。

  二、新課講解:

  實(shí)際上在幾何證明題中,我們更多地將切線的判定定理和性質(zhì)定理應(yīng)用在具體的問題中,而一道幾何題的分析過程,是證題中的最關(guān)鍵步驟。p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的切線,切點(diǎn)為b,oc平行于弦ad.求證:dc是⊙o的切線。

  分析:欲證cd是⊙o的切線,d是⊙o的弦ad的一個(gè)端點(diǎn)當(dāng)然在⊙o上,屬于公共點(diǎn)已給定,而證直線是圓的切線的情形。所以輔助線應(yīng)該是連結(jié)oc.只要證od⊥cd即可。亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀察圖形,兩個(gè)角分別位于△odc和△obc中,如果兩個(gè)三角形相似或全等都可以產(chǎn)生對應(yīng)角相等的結(jié)果。而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個(gè)三角形全等。

  ∠3如何等于∠4呢?題中還有一個(gè)已知條件ad∥oc,平行的位置關(guān)系,可以造成角的.相等關(guān)系,從而導(dǎo)致∠3=∠4.命題得證。證明:連結(jié)od.教師向?qū)W生解釋書上的證題格式屬于推出法和因?yàn)樗苑ǖ穆?lián)用,以后證題中同學(xué)可以借鑒。p.110例4如圖7-59,在以o為圓心的兩個(gè)同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點(diǎn)e求證:cd與小圓相切。

  分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線cd與小⊙o并未已知公共點(diǎn)。這個(gè)時(shí)候我們必須從圓心o向cd作垂線,設(shè)垂足為f.此時(shí)f點(diǎn)在直線cd上,如果我們能證得of等于小⊙o的半徑,則說明點(diǎn)f必在小⊙o上,即可根據(jù)切線的判定定理認(rèn)定cd與小⊙o相切。題目中已告訴我們ab切小⊙o于e,連結(jié)oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結(jié)oe,過o作of⊥cd,重足為f.

  請同學(xué)們注意本題中證一條直線是圓的切線時(shí),這種證明途徑是由直線與圓的公共點(diǎn)來給定所決定的。

  練習(xí)

  p.111,1.已知:oc平分∠aob,d是oc上任意一點(diǎn),⊙d與oa相切于點(diǎn)e.求證:ob與⊙d相切。分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無公共點(diǎn)的情況。這時(shí)應(yīng)從圓心d向⊙b作垂線,垂足為f,然后證垂線段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點(diǎn)e,只要連結(jié)de.再根據(jù)角平分線的性質(zhì),問題便得到解決。證明:連結(jié)de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點(diǎn),⊙o與腰ab相切于點(diǎn)d.求證:ac與⊙o相切。

  分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線與圓的公共點(diǎn)未給定情況。輔助線的方法同第1題,證法類同。只不過要針對本題特點(diǎn)還要連結(jié)oa.從等腰三角形的”三線合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線的性質(zhì),使問題得到證明。證明:連結(jié)od、oa,作oe⊥ac,垂足為e.同學(xué)們想一想,在證明oe=od時(shí),還可以怎樣證?

  (答案)可通過“角、角、邊”證rt△odb≌rt△oec.

  三、新課講解

  為培養(yǎng)學(xué)生閱讀教材的習(xí)慣讓學(xué)生閱讀109頁到110頁。從中總結(jié)出本課的主要內(nèi)容:

  1.在證題中熟練應(yīng)用切線的判定方法和切線的性質(zhì)。

  2.在證明一條直線是圓的切線時(shí),只能遇到兩種情形之一,針對不同的情形,選擇恰當(dāng)?shù)淖C明途徑,務(wù)必使同學(xué)們真正掌握。

  (1)公共點(diǎn)已給定。做法是“連結(jié)”半徑,讓半徑“垂直”于直線。

  (2)公共點(diǎn)未給定。做法是從圓心向直線“作垂線”,證“垂線段等于半徑”。

  四、布置作業(yè)

  教材p.116中8、9.2.教材p.117

初中數(shù)學(xué)圓教案6

  一、內(nèi)容和內(nèi)容解析

  (一)內(nèi)容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集、

  (二)內(nèi)容解析

  現(xiàn)實(shí)生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系、本節(jié)課從生活實(shí)際出發(fā)導(dǎo)入常見行程問題的不等關(guān)系,使學(xué)生充分認(rèn)識到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望、再通過對實(shí)例的進(jìn)一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個(gè)概念、前面學(xué)過方程、方程的解、解方程的概念、通過類比教學(xué)、不等式、不等式的解、解不等式幾個(gè)概念不難理解、但是對于初學(xué)者而言,不等式的解集的理解就有一定的難度、因此教材又進(jìn)行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助、

  基于以上分析,可以確定本節(jié)課的教學(xué)重點(diǎn)是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上、

  二、目標(biāo)和目標(biāo)解析

  (一)教學(xué)目標(biāo)

  1、理解不等式的概念

  2、理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系

  3、了解解不等式的概念

  4、用數(shù)軸來表示簡單不等式的解集

  (二)目標(biāo)解析

  1、達(dá)成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式、

  2、達(dá)成目標(biāo)2的標(biāo)志是:能理解不等式的'解是解集中的某一個(gè)元素,而解集是所有解組成的一個(gè)集合、

  3、達(dá)成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個(gè)過程、

  4、達(dá)成目標(biāo)4的標(biāo)志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個(gè)重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具、操作時(shí),要掌握好“兩定”:一是定界點(diǎn),一般在數(shù)軸上只標(biāo)出原點(diǎn)和界點(diǎn)即可,邊界點(diǎn)含于解集中用實(shí)心圓點(diǎn),或者用空心圓點(diǎn);二是定方向,小于向左,大于向右、

  三、教學(xué)問題診斷分析

  本節(jié)課實(shí)質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學(xué),學(xué)生不難理解,但是對不等式的解集的理解就有一定的難度、因此,本節(jié)課的教學(xué)難點(diǎn)是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集、

  四、教學(xué)支持條件分析

  利用多媒體直觀演示課前引入問題,激發(fā)學(xué)生的學(xué)習(xí)興趣、

  五、教學(xué)過程設(shè)計(jì)

  (一)動畫演示情景激趣

  多媒體演示:兩個(gè)體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個(gè)大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進(jìn)行下去了,這是什么原因呢?

  設(shè)計(jì)意圖:通過實(shí)例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣、

  (二)立足實(shí)際引出新知

  問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應(yīng)滿足什么條件?

  小組討論,合作交流,然后小組反饋交流結(jié)果、最后,老師將小組反饋意見進(jìn)行整理(學(xué)生沒有討論出來的思路老師進(jìn)行補(bǔ)充)

  1、從時(shí)間方面慮:2、從行程方面:<>50

  3、從速度方面考慮:x>50÷

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生合作、交流的意識習(xí)慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解、老師對問題解決方法的梳理與補(bǔ)充,發(fā)散學(xué)生思維,培養(yǎng)學(xué)生分析問題、解決問題的能力、

  (三)緊扣問題概念辨析

  1、不等式

  設(shè)問1:什么是不等式?

  設(shè)問2:能否舉例說明?由學(xué)生自學(xué),老師可作適當(dāng)補(bǔ)充、比如:是不等式、

  2、不等式的解

  設(shè)問1:什么是不等式的解?

  設(shè)問2:不等式的解是唯一的嗎?

  由學(xué)生自學(xué)再討論、

  老師點(diǎn)撥:由x>50÷得x>75

  說明x任意取一個(gè)大于75的數(shù)都是不等式3、不等式的解集

  設(shè)問1:什么是不等式的解集?<,>50的解、<,>50,x>50÷都

  設(shè)問2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?

  由學(xué)生自學(xué)后再小組合作交流、

  老師點(diǎn)撥:不等式的解是不等式解集中的一個(gè)元素,而不等式的解集是不等式所有解組成的一個(gè)集合、

  4、解不等式

  設(shè)問1:什么是解不等式?

  由學(xué)生回答、

  老師強(qiáng)調(diào):解不等式是一個(gè)過程、

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生的自學(xué)能力,進(jìn)一步培養(yǎng)學(xué)生合作交流的意識、遵循學(xué)生的認(rèn)知規(guī)律,有意識、有計(jì)劃、有條理地設(shè)計(jì)一些問題,可以讓學(xué)生始終處于積極的思維狀態(tài),不知不覺中接受了新知識、老師再適當(dāng)點(diǎn)撥,加深理解、

  (四)數(shù)形結(jié)合,深化認(rèn)識

  問題1:由上可知,x>75既是不等式的解集、那么在數(shù)軸上如何表示x>75呢?

  問題2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?

  由老師講解,注意規(guī)范性,準(zhǔn)確性、

  老師適當(dāng)補(bǔ)充:“≥”與“≤”的意義,并強(qiáng)調(diào)用“≥”或“≤”連接的式子也是不等式、比如x≤ 75就是不等式、

  設(shè)計(jì)意圖:通過數(shù)軸的直觀讓學(xué)生對不等式的解集進(jìn)一步加深理解,滲透數(shù)形結(jié)合思想、

  (五)歸納小結(jié),反思提高

  教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答如下問題

  1、什么是不等式?

  <的解集,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?

  4、用數(shù)軸表示不等式的解集要注意哪些方面?

  設(shè)計(jì)意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學(xué)習(xí)經(jīng)驗(yàn)、

  (六)布置作業(yè),課外反饋

  教科書第119頁第1題,第120頁第2,3題、

  設(shè)計(jì)意圖:通過課后作業(yè),教師及時(shí)了解學(xué)生對本節(jié)課知識的掌握情況,以便對教學(xué)進(jìn)度和方法進(jìn)行適當(dāng)?shù)恼{(diào)整、

  六、目標(biāo)檢測設(shè)計(jì)

  1、填空

  下列式子中屬于不等式的有___________________________

  ①x +7>

  ②②x≥ y + 2 = 0④ 5x + 7

  設(shè)計(jì)意圖:讓學(xué)生正確區(qū)分不等式、等式與代數(shù)式,進(jìn)一步鞏固不等式的概念、

  2、用不等式表示

  ① a與5的和小于7

  ② a的與b的3倍的和是非負(fù)數(shù)

  ③正方形的邊長為xcm,它的周長不超過160cm,求x滿足的條件

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負(fù)數(shù)(正數(shù)或負(fù)數(shù))、不超過(不低于)”等等,正確選擇不等號,又要注意實(shí)際問題中的數(shù)量的實(shí)際意義、

初中數(shù)學(xué)圓教案7

  教材與學(xué)情:

  解直角三角形的應(yīng)用是在學(xué)生熟練掌握了直角三角形的解法的基礎(chǔ)上進(jìn)行教學(xué),它是把一些實(shí)際問題轉(zhuǎn)化為解直角三角形的數(shù)學(xué)問題,對分析問題能力要求較高,這會使學(xué)生學(xué)習(xí)感到困難,在教學(xué)中應(yīng)引起足夠的重視。

  信息論原理:

  將直角三角形中邊角關(guān)系作為已有信息,通過復(fù)習(xí)(輸入),使學(xué)生更牢固地掌握(貯存);再通過例題講解,達(dá)到信息處理;通過總結(jié)歸納,使信息優(yōu)化;通過變式練習(xí),使信息強(qiáng)化并能靈活運(yùn)用;通過布置作業(yè),使信息得到反饋。

  教學(xué)目標(biāo):

  ⒈認(rèn)知目標(biāo):

  ⑴懂得常見名詞(如仰角、俯角)的意義

  ⑵能正確理解題意,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)

  ⑶能利用已有知識,通過直接解三角形或列方程的方法解決一些實(shí)際問題。

  ⒉能力目標(biāo):培養(yǎng)學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生思維能力的靈活性。

  ⒊情感目標(biāo):使學(xué)生能理論聯(lián)系實(shí)際,培養(yǎng)學(xué)生的`對立統(tǒng)一的觀點(diǎn)。

  教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn):利用解直角三角形來解決一些實(shí)際問題

  難點(diǎn):正確理解題意,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。

  信息優(yōu)化策略:

  ⑴在學(xué)生對實(shí)際問題的探究中,神經(jīng)興奮,思維活動始終處于積極狀態(tài)

  ⑵在歸納、變換中激發(fā)學(xué)生思維的靈活性、敏捷性和創(chuàng)造性。

  ⑶重視學(xué)法指導(dǎo),以加速教學(xué)效績信息的順利體現(xiàn)。

  教學(xué)媒體:

  投影儀、教具(一個(gè)銳角三角形,可變換圖2-圖7)

  高潮設(shè)計(jì):

  1、例1、例2圖形基本相同,但解法不同;這是為什么?學(xué)生的思維處于積極探求狀態(tài)中,從而激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性

  2、將一個(gè)銳角三角形紙片通過旋轉(zhuǎn)、翻折等變換,使學(xué)生對問題本質(zhì)有了更深的認(rèn)識

  教學(xué)過程:

  一、復(fù)習(xí)引入,輸入并貯存信息:

  1.提問:如圖,在rt△abc中,∠c=90°。

  ⑴三邊a、b、c有什么關(guān)系?

  ⑵兩銳角∠a、∠b有怎樣的關(guān)系?

  ⑶邊與角之間有怎樣的關(guān)系?

  2.提問:解直角三角形應(yīng)具備怎樣的條件:

  注:直角三角形的邊角關(guān)系及解直角三角形的條件由投影給出,便于學(xué)生貯存信息

  二、實(shí)例講解,處理信息:

  例1.(投影)在水平線上一點(diǎn)c,測得同頂?shù)难鼋菫?0°,向山沿直線前進(jìn)20為到d處,再測山頂a的仰角為60°,求山高ab。

  ⑴引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。

  ⑵分析:求ab可以解rt△abd和

  rt△abc,但兩三角形中都不具備直接條件,但由于∠adb=2∠c,很容易發(fā)現(xiàn)ad=cd=20米,故可以解rt△abd,求得ab。

  ⑶解題過程,學(xué)生練習(xí)。

  ⑷思考:假如∠adb=45°,能否直接來解一個(gè)三角形呢?請看例2。

  例2.(投影)在水平線上一點(diǎn)c,測得山頂a的仰角為30°,向山沿直線前進(jìn)20米到d處,再測山頂a的仰角為45°,求山高ab。

  分析:

  ⑴在rt△abc和rt△abd中,都沒有兩個(gè)已知元素,故不能直接解一個(gè)三角形來求出ab。

  ⑵考慮到ab是兩直角三角形的直角邊,而cd是兩直角三角形的直角邊,而cd均不是兩個(gè)直角三角形的直角邊,但cd=bc=bd,啟以學(xué)生設(shè)ab=x,通過列方程來解,然后板書解題過程。

  解:設(shè)山高ab=x米

  在rt△adb中,∠b=90°∠adb=45°

  ∵bd=ab=x(米)

  在rt△abc中,tgc=ab/bc

  ∴bc=ab/tgc=√3(米)

  ∵cd=bc-bd

  ∴√3x-x=20解得x=(10√3+10)米

  答:山高ab是(10√3+10)米

  三、歸納總結(jié),優(yōu)化信息

  例2的圖開完全一樣,如圖,均已知∠1、∠2及cd,例1中∠2=2∠1求ab,則需解rt△abd例2中∠2≠2∠1求ab,則利用cd=bc-bd,列方程來解。

  四、變式訓(xùn)練,強(qiáng)化信息

  (投影)練習(xí)1:如圖,山上有鐵塔cd為m米,從地上一點(diǎn)測得塔頂c的仰角為∝,塔底d的仰角為β,求山高bd。

  練習(xí)2:如圖,海岸上有a、b兩點(diǎn)相距120米,由a、b兩點(diǎn)觀測海上一保輪船c,得∠cab=60°∠cba=75°,求輪船c到海岸ab的距離。

  練習(xí)3:在塔pq的正西方向a點(diǎn)測得頂端p的

  仰角為30°,在塔的正南方向b點(diǎn)處,測得頂端p的仰角為45°且ab=60米,求塔高pq。

  教師待學(xué)生解題完畢后,進(jìn)行講評,并利用教具揭示各題實(shí)質(zhì):

  ⑴將基本圖形4旋轉(zhuǎn)90°,即得圖5;將基本圖形4中的rt△abd翻折180°,即可得圖6;將基本圖形4中rt△abd繞ab旋轉(zhuǎn)90°,即可得圖7的立體圖形。

  ⑵引導(dǎo)學(xué)生歸納三個(gè)練習(xí)題的等量關(guān)系:

  練習(xí)1的等量關(guān)系是ab=ab;練習(xí)2的等量關(guān)系是ad+bd=ab;練習(xí)3的等量關(guān)系是aq2+bq2=ab2

  五、作業(yè)布置,反饋信息

  《幾何》第三冊p57第10題,p58第4題。

  板書設(shè)計(jì):

  解直角三角形的應(yīng)用

  例1已知:………例2已知:………小結(jié):………

  求:………求:………

  解:………解:………

  練習(xí)1已知:………練習(xí)2已知:………練習(xí)3已知:………

  求:………求:………求:………

  解:………解:………解:………

【初中數(shù)學(xué)圓教案】相關(guān)文章:

初中數(shù)學(xué)圓教案12-29

初中數(shù)學(xué)圓教案5篇12-29

初中數(shù)學(xué)《圓》說課稿03-19

初中數(shù)學(xué) 和圓有關(guān)的比例線段 教案02-27

圓數(shù)學(xué)教案03-29

數(shù)學(xué)圓的面積教案02-15

初中數(shù)學(xué)圓教學(xué)反思02-17

初中數(shù)學(xué)圓教學(xué)反思03-27

小學(xué)圓的數(shù)學(xué)教案04-23

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
日日狠狠久久偷偷色综合老牛 | 亚洲一级精品在线观看 | 亚洲中文字幕久久精品91 | 未满成年国产在线观看 | 亚洲综合经典在线一区二区 | 亚洲中文字幕永码永久在线 |