- 相關推薦
數學高中必背知識點總結
在平凡的學習生活中,是不是聽到知識點,就立刻清醒了?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。那么,都有哪些知識點呢?以下是小編為大家收集的數學高中必背知識點總結,僅供參考,歡迎大家閱讀。
數學高中必背知識點總結1
簡單隨機抽樣
(1)總體和樣本
①在統計學中,把研究對象的全體叫做總體。
②把每個研究對象叫做個體。
③把總體中個體的總數叫做總體容量。
④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,…,xx研究,我們稱它為樣本。其中個體的個數稱為樣本容量。
(2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的'方法:
①抽簽法;
②隨機數表法;
③計算機模擬法;
③使用統計軟件直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調查對象群體中的每一個對象編號;
②準備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調查
數學高中必背知識點總結2
空間兩條直線只有三種位置關系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的.直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行
①直線在平面內——有無數個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
數學高中必背知識點總結3
函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
概率和統計。這部分和我們的生活聯系比較大,屬應用題。
空間位置關系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
解析幾何。高考的難點,運算量大,一般含參數。
高考對數學基礎知識的'考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。
掌握分類計數原理與分步計數原理,并能用它們分析和解決一些簡單的應用問題。
理解排列的意義,掌握排列數計算公式,并能用它解決一些簡單的應用問題。
理解組合的意義,掌握組合數計算公式和組合數的性質,并能用它們解決一些簡單的應用問題。
掌握二項式定理和二項展開式的性質,并能用它們計算和證明一些簡單的問題。
了解隨機事件的發生存在著規律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在n次獨立重復試驗中恰好發生k次的概率。
數學高中必背知識點總結4
(一)導數第一定義
設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f(x0),即導數第一定義
(二)導數第二定義
設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f(x0),即導數第二定義
(三)導函數與導數
如果函數y=f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y=f(x)對于區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y,f(x),dy/dx,df(x)/dx。導函數簡稱導數。
(四)單調性及其應用
1、利用導數研究多項式函數單調性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內符號(3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2、用導數求多項式函數單調區間的一般步驟
(1)求f(x)
(2)f(x)>0的.解集與定義域的交集的對應區間為增區間;f(x)<0的解集與定義域的交集的對應區間為減區間
學習了導數基礎知識點,接下來可以學習高二數學中涉及到的導數應用的部分。
數學高中必背知識點總結5
一、高中數列基本公式:
1、一般數列的通項an與前n項和Sn的關系:an=
2、等差數列的通項公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1為首項、ak為已知的第k項)當d≠0時,an是關于n的一次式;當d=0時,an是一個常數。
3、等差數列的前n項和公式:Sn=
Sn=
Sn=
當d≠0時,Sn是關于n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關于n的正比例式。
4、等比數列的通項公式:an=a1qn-1an=akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數列的前n項和公式:當q=1時,Sn=na1(是關于n的正比例式);
當q≠1時,Sn=
Sn=
二、高中數學中有關等差、等比數列的結論
1、等差數列{an}的'任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍為等差數列。
2、等差數列{an}中,若m+n=p+q,則
3、等比數列{an}中,若m+n=p+q,則
4、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍為等比數列。
5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。
7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,a+d,a+3d
10、三個數成等比數列的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3(為什么?)
數學高中必背知識點總結6
考點一、映射的概念
1、了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多
2、映射:設A和B是兩個非空集合,如果按照某種對應關系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping)。映射是特殊的對應,簡稱“對一”的對應。包括:一對一多對一
考點二、函數的概念
1、函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對于集合A中的任意一個數x,在集合B中都存在確定的數y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(x),xA。其中x叫自變量,x的取值范圍A叫函數的定義域;與x的值相對應的y的'值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。
2函、數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。
3、區間的概念:設a,bR,且a
①(a,b)={xa
⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={
考點三、函數的表示方法
1、函數的三種表示方法列表法圖象法解析法
2、分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的并集,值域是各段值域的并集。
考點四、求定義域的幾種情況
①若f(x)是整式,則函數的定義域是實數集R;
②若f(x)是分式,則函數的定義域是使分母不等于0的實數集;
③若f(x)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實數集合;
④若f(x)是對數函數,真數應大于零。
⑤因為零的零次冪沒有意義,所以底數和指數不能同時為零。
⑥若f(x)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;
⑦若f(x)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題
【數學高中必背知識點總結】相關文章:
高中化學必背知識點總結09-27
精選高中化學必背知識點總結06-08
高中理科生物必背知識點總結06-17
高中化學高考必背知識點05-24
高中化學必背知識點歸納與總結03-19
2023高三數學必背知識點03-08
語文必背知識點03-03
中考化學必背知識點總結02-06
高考地理必背知識點總結06-12